> As we have mentioned, digital computers fall within the class of discrete-state machines. But the number of states of which such a machine is capable is usually enormously large. For instance, the number for the machine now working at Manchester is about 2 165,000, i.e., about 10 50,000. Compare this with our example of the clicking wheel described above, which had three states. It is not difficult to see why the number of states should be so immense. The computer includes a store corresponding to the paper used by a human computer. It must be possible to write into the store any one of the combinations of symbols which might have been written on the paper. For simplicity suppose that only digits from 0 to 9 are used as symbols. Variations in handwriting are ignored. Suppose the computer is allowed 100 sheets of paper each containing 50 lines each with room for 30 digits. Then the number of states is 10 100x50x30 i.e., 10 150,000 . This is about the number of states of three Manchester machines put together. The logarithm to the base two of the number of states is usually called the "storage capacity" of the machine. Thus the Manchester machine has a storage capacity of about 165,000 and the wheel machine of our example about 1.6. If two machines are put together their capacities must be added to obtain the capacity of the resultant machine. This leads to the possibility of statements such as "The Manchester machine contains 64 magnetic tracks each with a capacity of 2560, eight electronic tubes with a capacity of 1280. Miscellaneous storage amounts to about 300 making a total of 174,380."
And don't forget that the word bit was only around two years old at the time the paper was written. (I have no idea when Tukey first suggested it. I'm using Shannon's publication for a date.)
10^9 bits is only (check my math) about 120 MBytes.