The ideas of these machines isn't entirely new. There's some research from 2002, where Liquid State Machines (LSM) are introduced[1]. These are networks that generally rely on continuous inputs into spiking neural networks, which are then read by some dense layer that connects to all the neurons in this network to read what is called the liquid state.
These LSMs have also been used for other tasks, like playing Atari games in a paper from 2019[2], where they show that while sometimes these networks can outperform humans, they don't always, and they tend to fail at the same things more conventional neural networks failed at at the time as well. They don't outperform these conventional networks, though.
Honestly, I'd be excited to see more research going into continuous processing of inputs (e.g., audio) with continuous outputs, and training full spiking neural networks based on neurons on that idea. We understand some of the ideas of plasticity, and they have been applied in this kind of research, but I'm not aware of anyone creating networks like this with just the kinds of plasticity we see in the brain, with no back propagation or similar algorithms. I've tried this myself, but I think I either have a misunderstanding of how things work in our brains, or we just don't have the full picture yet.
These LSMs have also been used for other tasks, like playing Atari games in a paper from 2019[2], where they show that while sometimes these networks can outperform humans, they don't always, and they tend to fail at the same things more conventional neural networks failed at at the time as well. They don't outperform these conventional networks, though.
Honestly, I'd be excited to see more research going into continuous processing of inputs (e.g., audio) with continuous outputs, and training full spiking neural networks based on neurons on that idea. We understand some of the ideas of plasticity, and they have been applied in this kind of research, but I'm not aware of anyone creating networks like this with just the kinds of plasticity we see in the brain, with no back propagation or similar algorithms. I've tried this myself, but I think I either have a misunderstanding of how things work in our brains, or we just don't have the full picture yet.
[1] doi.org/10.1162/089976602760407955 [2] doi.org/10.3389/fnins.2019.00883