The key figure is the lift to drag ratio - as the lift needed is determined by the weight, then that divided by lift / drag gives you the thrust you need to keep flying. Autorotating small blades are not efficient lift generators, compared to fixed wings, which can have lift / drag ratios over 50 (though not on this machine.) Even partial lift from the rotors would reduce the overall lift / drag ratio. In addition, having the rotors generate lift would have an effect on the airflow over the wing, and probably be detrimental to its efficiency - it is bad enough that they are there at all, especially those in front of the wing.
Would a classic helicopter rotor overhead be a better solution, paired with those classic wide horizontal wings? Lift with the rotor, then thrust with the rear prop, using both wing and auto rotating overhead rotor combined for maximum lift.
Requires a tail rotor or similar. Perhaps the rear thrust motor or prop can be rotated sideways for takeoff? Now we’re getting complex, but not extraordinarily so.
Ape4 noted would add weight and complexity. Any more than eight small electric motors and props do now?
There have been several experimental aircraft like that [1] [2], but they are more like augmented helicopters than fixed-wing aircraft with VTOL. Aerodynamically, the arrangement is a biplane, and biplanes are rather inefficient because interference between the flows over the two wings reduces the overall efficiency.
Note that in the case of the Sikorsky S-72, the intent was to stop the rotor in cruise.
Thank you. Looks like what I have in mind is called a Gyrodyne[1] or Heliplane[2]. I would expect it would have almost the same range and speed as an airplane with VTOL capabilities. As you mentioned, the interaction between the two flight surfaces may be too inefficient, but the X3 you linked to broke the unofficial speed record, so there's that.